
PIPEODESIC

Pipe + Geodesic

Digital FABRICATION Workshop | April 2025

PIPEODESIC

پایپودزیک

Pipeodesic derives its name from a blend of two terms: "Pipe," referencing the use of PVC tubes as the structure's vertical elements, and "Geodesic," pointing to the conceptual foundation of the dome typology that inspired the initial design. The workshop began with the intention to construct a geodesic dome; however, throughout the design process, aesthetic considerations and an interest in formal experimentation led to a significant transformation. While the triangular structural logic remained intact, the hemispherical geometry evolved into a new reconfigured form.

کارگاه (Pipeodesic) عنوان خود را از ترکیب دو واژه‌ی «Pipe» و بخش انتهایی (Geodesic) گرفته است؛ بخش نخست به دلیل استفاده از لوله‌های PVC به عنوان عناصر عمودی سازه، و بخش دوم به نشانه‌ی ارجاع مفهومی به گبد ژئودزیک است. ایده‌ی اولیه‌ی این کارگاه بر پایه‌ی ساخت یک گند ژئودزیک شکل گرفت، اما در روند طراحی، با دقت گرفتن ملاحظات زیبایی‌شناسانه و تمایل به تجربه‌های جدید در حوزه‌ی فرم، ساختار نیم‌کره‌ای اولیه دستخوش تغییراتی شد و با حفظ ساختار فرم جدیدی متولد شد.

.01

INTRODUCTION

معرفی

The event took place on April 22, 2025, at the Baagh-e-Melli campus of the University of Art, Tehran, in conjunction with Iran's National Architecture Day. Over the course of a single intensive day—from 8:00 AM to 11:00 PM—22 architecture students and two instructors engaged in a hands-on exploration of digital fabrication. Rather than focusing on software instruction, the workshop emphasized real-world construction challenges under time constraints. Most participants had previously been introduced to parametric design through Grasshopper in their coursework, and the workshop pushed them to adapt digital thinking to material constraints, structural logic, and the assembly process at full scale. Pipeodesic offered a setting for collaborative learning, rapid decision-making, and the practical testing of ideas.

It was ultimately an exercise in bridging the gap between digital design and architectural embodiment.

این کارگاه در تاریخ سوم اردیبهشت ماه ۱۴۰۴، هم‌زمان با روز ملی معمار، در پردیس با غ ملی دانشگاه هنر ایران برگزار شد. طی این رویداد فشرده‌ی یک روزه، که از ساعت ۸ الی ۲۳ ادامه داشت، تعداد ۲۲ نفر از دانشجویان معماری به همراه دو مدرس، تجربه‌ای عملی از ساخت دیجیتال را از سر گرداندند. تمرکز این کارگاه، نه بر آموزش نرم‌افزار، بلکه بر شناخت واقعیت‌های اجرایی ساخت دیجیتال در بستر زمانی محدود بود. بیشتر شرکت‌کنندگان که پیش‌تر، در درس کاربرد کامپیوت، مبانی طراحی رایانشی را در محیط گرس‌های پر فراگرفته بودند، در این رویداد فرصتی برای تمرین تصمیم‌گیری سریع، کار گروهی، و سنجش قابلیت‌های طراحی در بستر ساخت واقعی بود.

پایپوذریک تلاشی است برای نزدیک کردن طراحی دیجیتال به تجربه‌ی فیزیکی معماری.

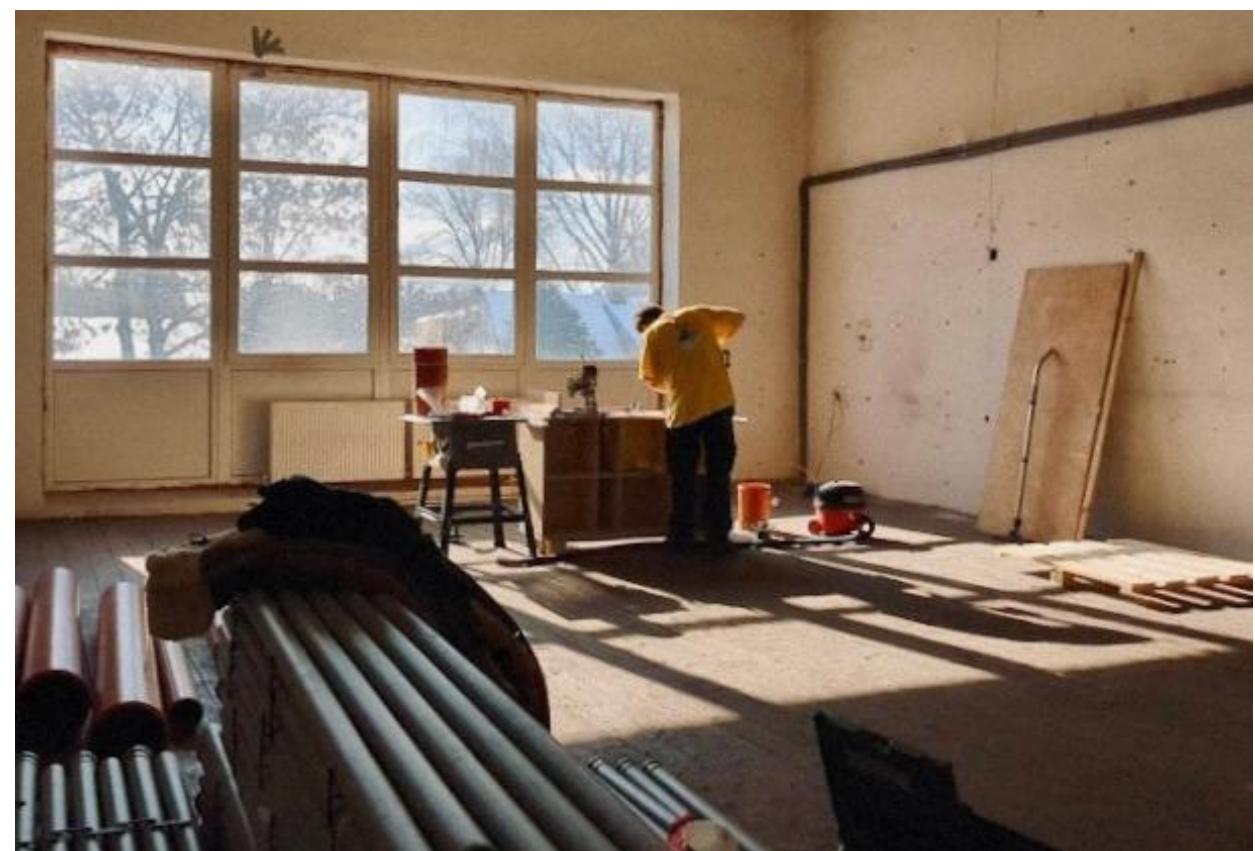
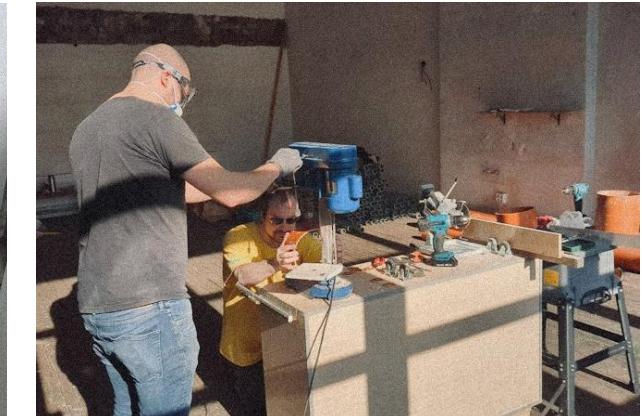
The design of this structure was conceived not merely as a reproduction of a classical form, but as an opportunity to engage creatively with notions of structure, geometry, and fabrication. Faced with constraints in time, tools, and materials, the design team sought a contemporary approach to the geodesic dome by drawing on purposeful references, redefining form, and leveraging digital design tools. What follows is an overview of the three key stages of this journey: the origin of the concept, the geometric reconfiguration process, and the challenges of construction.

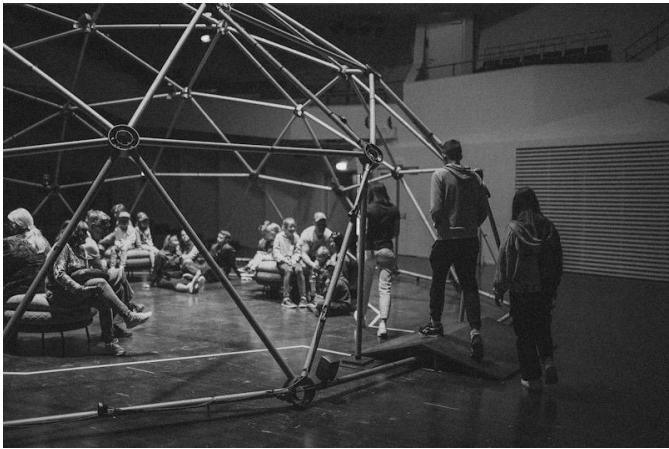
فرآیند طراحی این سازه، نه صرفاً به منزههای بازآفرینی یک فرم کلاسیک، بلکه به عنوان فرصتی برای مواجهه‌ی خلاقانه با مفاهیم سازه، هندسه و ساخت، شکل گرفت. در بسترهای که محدودیت‌های زمانی، فنی و اجرایی حضور پررنگی داشتند، تیم طراحی تلاش کرد تا با تکیه بر الگوی‌داری هدفمند، بازنگری فرم و بهره‌گیری از طراحی دیجیتال، به رویکردی معاصر در مواجهه با گنبد ژئودزیک دست یابد. آن‌چه در ادامه می‌آید، مروج است بر سه مرحله‌ی کلیدی این مسیر: سرچشممه‌ی ایده، فرآیند بازپیکربندی هندسی، و چالش‌های اجرایی پیش‌رو.

Stage 1

- **Discovering the Hurt Family**

As previously mentioned, the workshop began with the idea of building a geodesic dome using affordable materials that could be assembled within a single day and with minimal reliance on specialized tools. During the early research phase, the team came across a family-run business in the United States that specializes in the design and construction of geodesic domes made from PVC pipes and zip ties. The Hurt family, operating under the brand name Ziptiedome (ziptiedome.com), offers a modular system centered around a custom-designed joint. This joint allows for the rapid assembly of structural members using zip ties alone. Their kits typically include pre-cut pipes, perforated connectors, and detailed assembly diagrams. Over the years, customers have adapted their systems for various uses—from greenhouses and animal shelters to temporary festival pavilions and exhibition structures. The brand offers a range of geodesic domes in frequencies from V2 to V6, and clients can specify both the dome type and the desired radius. Ziptiedome provides two standard package options:



01. A complete kit with cut pipes, drilled connectors, and printed assembly drawings
02. A documentation-only package, including cut lists, joint specifications, and structural layout plans


To better understand the system's potential, the team analyzed photographs and case studies of previously built domes using this method. This review became a key reference point in the design development of the Pipeodesic project

.02

DESIGN PROCESS

رُونَد طراحی

بخش اول

آشنایی با خانواده‌ی هارت

همان‌طور که پیش‌تر اشاره شد، ایده‌ی اولیه‌ی این کارگاه بر پایه‌ی ساخت یک گنبد ژئودزیک با مصالح مفرونه به صرفه شکل گرفت؛ سازه‌ای که قابلیت اجرا در یک روز و با حداقل نیاز به ابزار تخصصی را داشته باشد. در جریان جست‌وجو برای نمونه‌های الهام‌بخش در راستای توسعه‌ی این ایده، با یک کسب‌وکار خانوادگی در ایالت متحده‌ی آمریکا آشنا شدیم که در زمینه‌ی طراحی، ساخت و اجرای گنبد‌های ژئودزیک با استفاده از لوله‌های PVC و بسته‌های کمربندی فعالیت می‌کند.

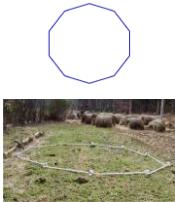
خانواده‌ی هارت (Hurt)، محصول خود را با عنوان تجاری ZiptieDome و از طریق وب‌سایت ziptiedome.com ارائه می‌دهد. ویژگی شاخص این سیستم، طراحی یک مفصل ساده‌ای عملکردی است که امکان اتصال سریع اعضای لوله‌ای را از طریق بسته‌های کمربندی فراهم می‌سازد. این خانواده، بسته‌هایی شامل لوله‌های برش‌خورده، مفاصل آماده، نقشه‌های مونتاژ را برای مشتریان خود ارسال می‌کند. کاربران این سیستم تاکنون از آن در کاربردهای متنوعی مانند گلخانه‌ها، پناهگاه‌های حیوانات، فضاهای نمایشگاهی، و سازه‌های موقت ویژه‌ی فستیوال‌ها بهره برده‌اند.

در میان محصولات ارائه‌شده توسط این برنده، انواع گنبد‌های ژئودزیک با فرکانس‌های مختلف، از ۷۶ تا ۷۲، قابل سفارش هستند. مشتریان می‌توانند نوع گنبد، شعاع کره‌ی مدنظر، و سطح خدمات مورد نیاز خود را انتخاب کنند. بسته‌های ارائه شده به‌طور کلی شامل دو نوع اصلی هستند:

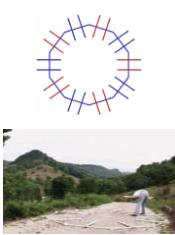
۱. بسته‌ی کامل شامل لوله‌های برش‌خورده، مفاصل سوراخ شده، و نقشه‌ی مونتاژ
۲. بسته‌ی محاسباتی شامل نقشه‌ها، طول اعضاء، تعداد مفاصل، و الگوی چینش

در ادامه، تصاویری از پروژه‌های اجرا شده توسط کاربران این سیستم مورد بررسی قرار گرفت تا شناخت دقیق‌تری از قابلیت‌های اجرایی آن حاصل شود.

Step 01 :


Unpack the dome materials and place them in a convenient spot outside. The area where the dome will be constructed. Use wire cutters or manually unwind the wire for releasing the struts from the restraining wires.

Step 02 :


Select 10 Blue Struts, 10 Blue Hubs, 10 Center Rings, and 10 Zip Ties. Put the end of the Blue Strut into the opening on the Blue Hub. Insert a Zip Tie into the end of the Blue Strut. Place a Center Ring on the end of the Blue Strut. Loop the Zip Tie through the Center Ring. Tighten the Zip Tie to Secure the Center Ring to the Strut. Repeat to attach all 10 Blue Hubs to 10 Blue Struts, and lay the Struts in a stack.

Step 03 :

Assemble the Foundation Ring. Lay the 10 Blue Struts with Blue Hubs in a circle, with one Hub between every two Struts.

Step 04 :

Assemble the First Tier Supports. Select 10 Red Struts and 10 Blue Struts. Lay alternate pairs of Red and Blue Struts on top of the Foundation Ring.

Step 05 :

Spread each of the two struts to make a triangle. Attach the Struts to the Foundation Hubs with Zip Ties to make alternating Red and Blue triangles.

Step 06 :

Select 5 Red Hubs, 5 Blue Hubs, and 10 Center Rings. Attach the 5 Red Hubs to the Red Struts with Zip Ties to complete the Red Triangles. Attach the 5 Blue Hubs to the Blue Struts with Zip Ties to complete the Blue Triangles.

Step 07 :

Raise the First Tier. Select 10 Red Struts. Raise the Triangles up from the ground to insert the Red Struts between the hubs.

Step 08 :

Assemble the Second Tier - Part 1. Select 5 Blue Hubs, 5 Red Struts, and 5 Center Rings. Attach the 5 Blue Hubs to the 5 Red Struts. Lay the Red Struts with Blue Hubs in a stack. Next, attach the other end of the 5 Red Struts into the 5 Red Hubs on the First Tier.

Step 09 :

Assemble the Second Tier - Part 2. Select 10 Blue Struts. Attach the 10 Blue Struts to the Hubs in the First Tier.

Step 10 :

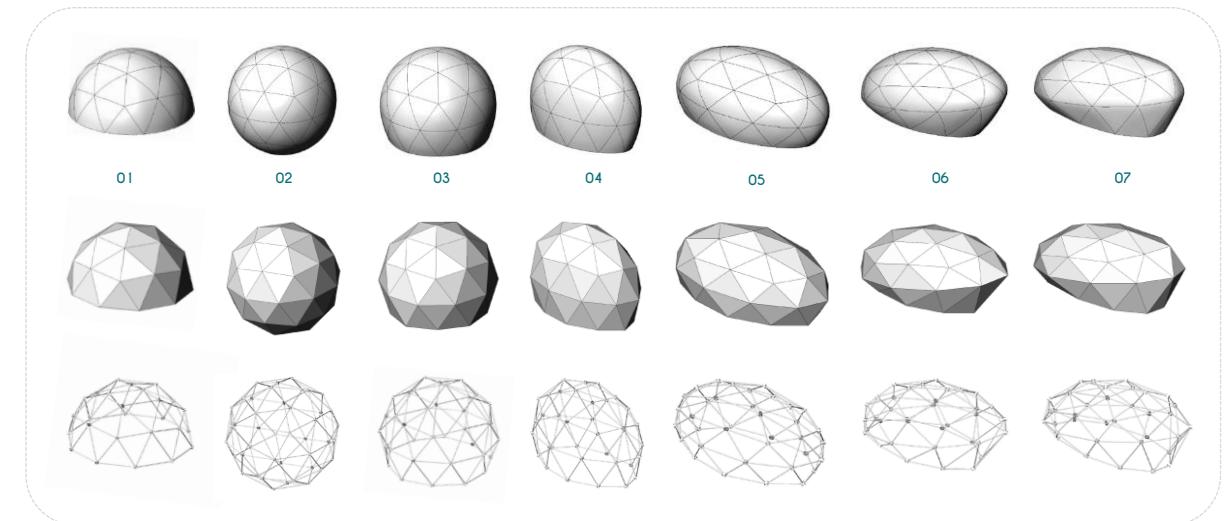
Complete the Second Tier. Select 5 Blue Struts. Using a stepladder for each hub, secure the two Blue Struts from Step 9 to the Blue 6-way hub at the top of the Second Tier. Next, attach a Blue Strut to the hub to connect the hubs together at the top of the Second Tier.

Step 11 :

Attach a Red Strut to the remaining Red Hub. Insert the other end of the Red Strut into a hub on the Second Tier. Insert the other 4 Red Struts into the hubs on the Second Tier.

Step 12 :

Using a stepladder, move the Top Red Hub up and down to insert the Struts into the Hub. This will be a tight fit as the last pieces will lock the dome together. You may have to stand near the top of the ladder to apply force.

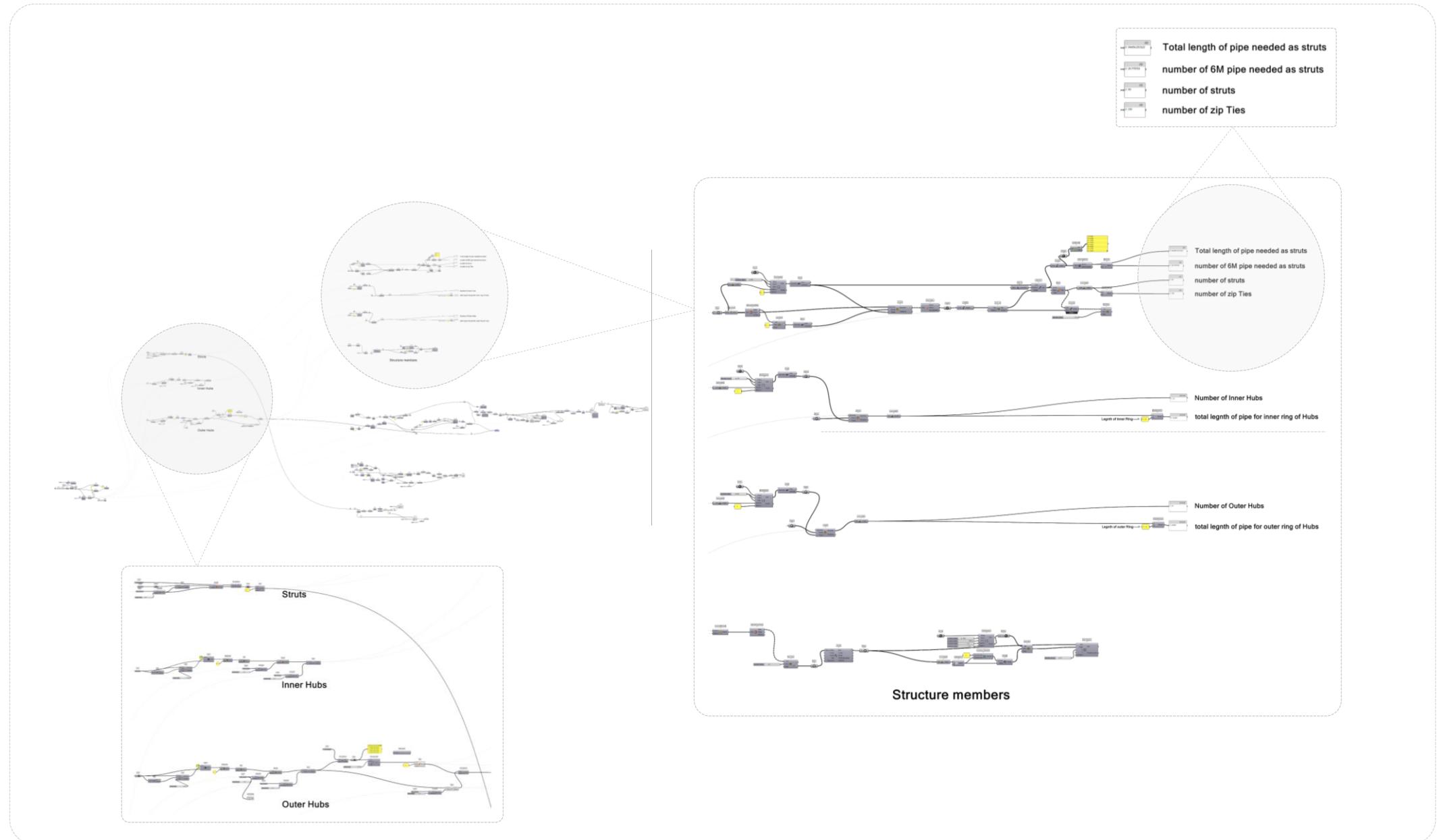


Although the workshop initially set out to replicate a classic geodesic dome using the ZipTieDome method, the design team soon chose to diverge from that conventional model. Instead of reproducing a familiar typology, the team pursued a more experimental approach—rethinking the form while retaining its core structural logic. This shift was driven by an interest in exploring new spatial potentials without abandoning the geometric clarity of the triangular framework. The revised design maintained the triangular network and basic ZipTieDome technique, yet introduced purposeful changes in curvature, surface distribution, and spatial orientation. The result was a departure from the perfect hemispherical symmetry of traditional domes: a new form emerged, marked by asymmetry, varied slopes, and a more dynamic relationship with the ground. It offered a contemporary reinterpretation of geodesic logic through altered formal expression. The transformation was applied to a segment equivalent to two-thirds of a full geodesic sphere, triangulated at frequency V2. In other words, while the subdivision count and triangle layout remained consistent with a standard V2 dome, the overall geometry was reshaped through deliberate modification. The final form was selected after testing multiple digital iterations within Rhino and Grasshopper. It achieved a balance between constructibility and expressive freedom—preserving the use of accessible materials while offering a distinctive experience in lightweight, modular, and flexible spatial construction.

با وجود آنکه ایده اولیه این کارگاه بر پایه ساخت یک گنبد ژئودزیک کلاسیک با بهره‌گیری از تکنیک ZipTieDome شکل گرفته بود، تیم طراحی تصمیم گرفت از بازتولید مستقیم این فرم مرسوم پرهیز کرده و در عوض، تجربه‌ای نوآورانه را مبتنی بر بازنگری در فرم کلی آن رقم بیند. این تصمیم ریشه در تمایل به کاوش در ظرفیت‌های اجرایی و تجربه‌ای تغییر در عین ثابت نگهداشتن منطق سازه‌ای داشت. چارچوب شبکه‌ی سازه، مبتنی بر اتصال اعضای مثلثی و استفاده از تکنیک ساخت ZipTieDome حفظ شد، اما نحوه توزیع این شبکه، الگوی اینجا و چیدمان کلی آن بر بستر زمین، دچار تغییرات هدفمندی شد. در این بازپیکریندی، از فرم نیم‌کره‌ای و متقارن گنبد کلاسیک فاصله گرفته شد و به جای آن، فرمی با تقارن شکسته و سطوح منحنی متنوع شکل گرفت که خواشی متفاوت و معاصر از هندسه‌ی ژئودزیک ارائه می‌داد. این تغییرات بر روی دو سوم از یک کره‌ی کامل، مثلث‌بندی شده با فرکانس ۲ (V2) صورت گرفت. به عبارت دیگر، فرم نهایی از منظر تعداد دفعات تقسیم‌بندی و تعداد مثلث‌ها، برابر با دو سوم یک کره‌ی کامل ژئودزیک در فرکانس V2 است. فرم نهایی پس از آزمون نمونه‌های متنوع دیجیتال در محیط Rhino و Grasshopper انتخاب شد؛ فرمی که ضمن حفظ امکان ساخت با مصالح موجود، تجربه‌ای متفاوت از یک سازه‌ی سبک، قابل مونتاژ و منعطف از نظر شکل‌پذیری را فراهم می‌کرد.

Stage 2 : Reconfiguring the Geodesic Form

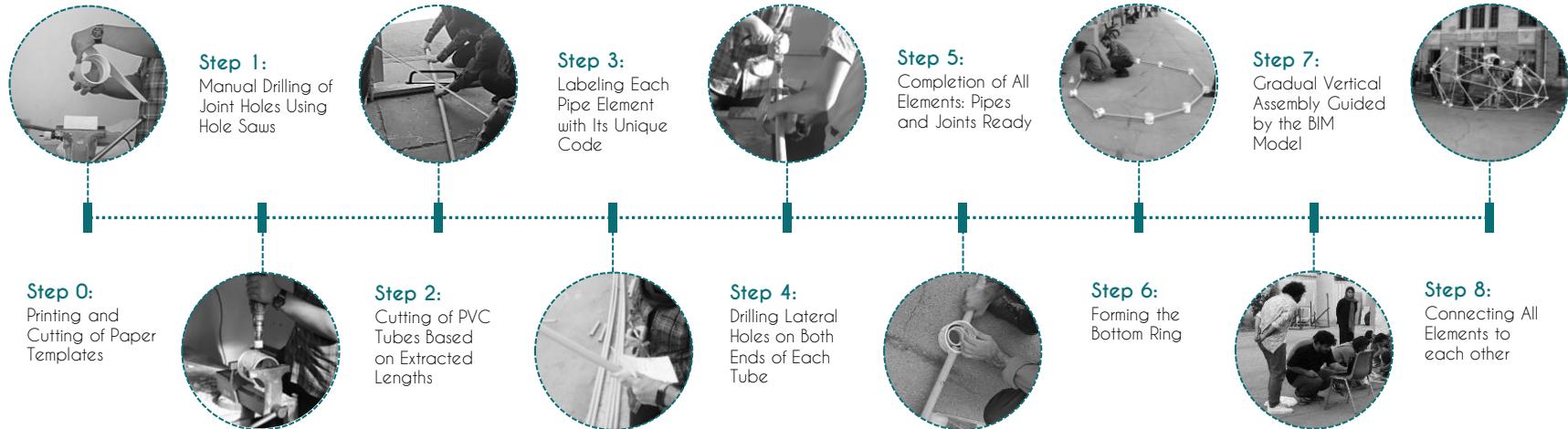
بخش دوم : بازتعریف فرم ژئودزیک


Stage 3 : Geometric Complexity and the Role of Digital Fabrication

بخش سوم : موانع ناشی از تغییر فرم و نقش ساخت دیجیتال

A standard V2 geodesic dome typically relies on just two types of joints—five-holed and six-holed—and two lengths of struts. This repetition simplifies fabrication: once the components are calculated, identical parts can be mass-produced, labeled, and assembled efficiently. During construction, color-coded diagrams further streamline the process, enabling quick assembly with minimal room for error.

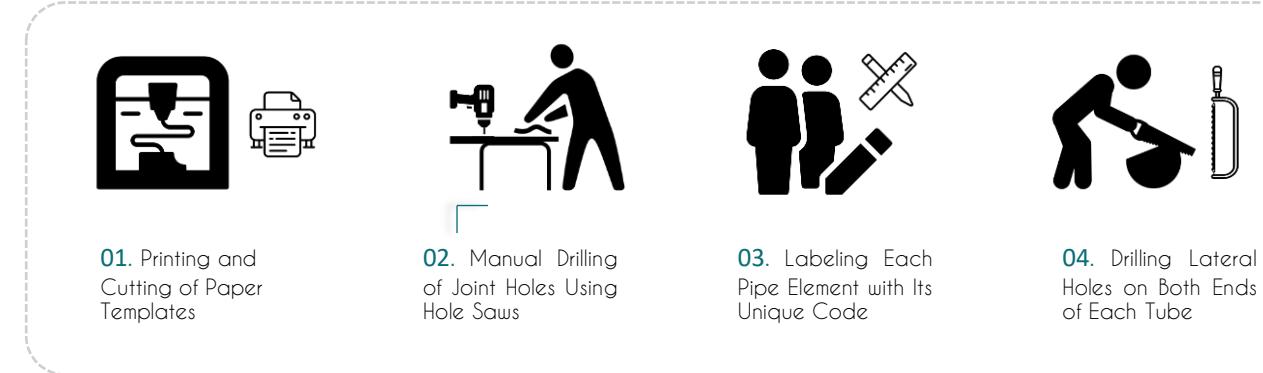
فرم کلاسیک گبده زئو دیک با فرکانس ۲، به صورت معمول از دو تیپ مفصل (۵ و ۶ سوراخ) و دو تیپ عضو عمودی تشکیل می شود. این ویژگی ساختاری باعث می شود که فرآیند ساخت بسیار ساده و تکرارشونده باشد؛ چراکه تنها کافی است تعداد مشخصی از هر تیپ قطعه بالگوی یکسان برش خورده و شماره گذاری شود. در مرحله مونتاژ نیز با استفاده از نقشه و کدگذاری رنگی قطعات، سازه در مدت زمانی کوتاه و با حداقل خطای قابل اجراست.



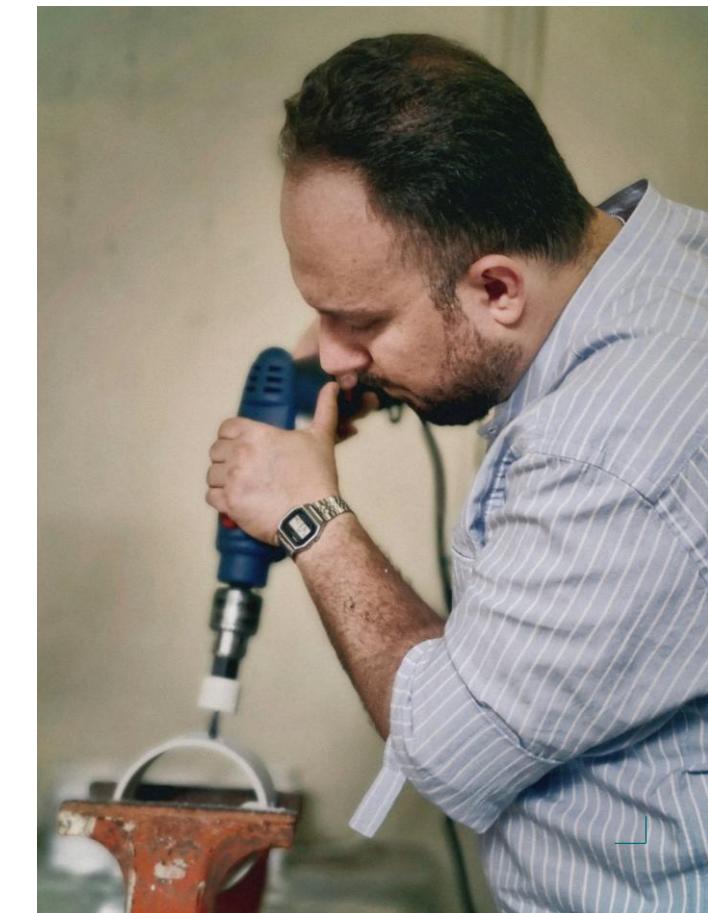
From Development Process of Grasshopper Optimization Algorithm

However, the reconfiguration of the form introduced a complete departure from this logic. In the revised geometry, no two components were identical—neither in shape, size, nor connection angles. This transformation necessitated a shift from traditional prefabrication methods to a more adaptive, data-driven process. Here, digital tools became essential. To manage the increased complexity, a detailed BIM-like model was developed in Grasshopper. A custom script was written to map the standardized joint detail onto the new geometry, calculate exact connection points, and extract individualized data for each structural member. In addition to generating a cut list, this process also supported material takeoffs and cost estimation.

اما در نتیجه‌ی بازیکردنی فرم و فاصله‌گرفتن از ساختار نیم‌کره‌ای کلاسیک، تمامی این معادلات از میان رفت. در فرم جدید، هیچ دو نقطه‌ای؛ نه در شکل، نه در ابعاد، و نه در موقعیت اتصال با یکدیگر یکسان نبودند. در این نقطه، ساخت دیجیتال و ابزارهای طراحی پارامتریک به عنوان راه حل وارد فرآیند شدند. برای مدیریت پیچیدگی به وجود آمده، نخست یک مدل اطلاعاتی (BIM) دقیق از پروژه در محیط Grasshopper تولید شد. کدی اختصاصی در گرس‌هایپر نوشته شد که مفصل استاندارد پروژه را بر روی حجم و رودی پیاده‌سازی کرده، موقعیت هر اتصال را محاسبه کرده و تعداد و ویژگی‌های هر عضو لوله‌ای را استخراج می‌کرد. این فرایند، علاوه بر ارائه لیست قطعات، برآورد هزینه و فهرست خرید مورد نیاز را نیز فراهم می‌ساخت.

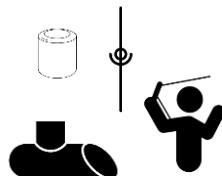

. 03

Day of Fabrication

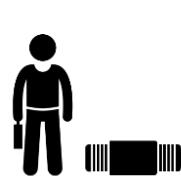

روز اجرا

The final construction phase took place at the metal workshop of the University of Art's Baagh-e-Melli campus. Tools available on site included hand drills, hole saws, hacksaws, and other basic equipment necessary for manual fabrication. The process began with printing the unrolled joint templates onto A3 sheets, which were then carefully cut and adhered to the cylindrical surfaces of the push-fit connectors. These templates indicated both the drilling positions and corresponding part numbers.

فرآیند ساخت نهایی در کارگاه ریخته‌گری پرديس باغ ملی دانشگاه هنر انجام شد. ابزارهای در اختیار شامل دریل، مته‌ی گردب، کمان اره و سایر تجهیزات دستی مورد نیاز برای اجرای پروژه بود. در نخستین مرحله، فایل‌های طراحی شده به صورت الگوی گستردۀ روی کاغذهای A3 چاپ و برش داده شدند. سپس این الگوها با دقت بر روی سطح خارجی مفاصل استوانه‌ای (بوشن‌ها) چسبانده شدند تا محل دقیق سوراخ‌ها و شماره‌گذاری آن‌ها مشخص گردد.



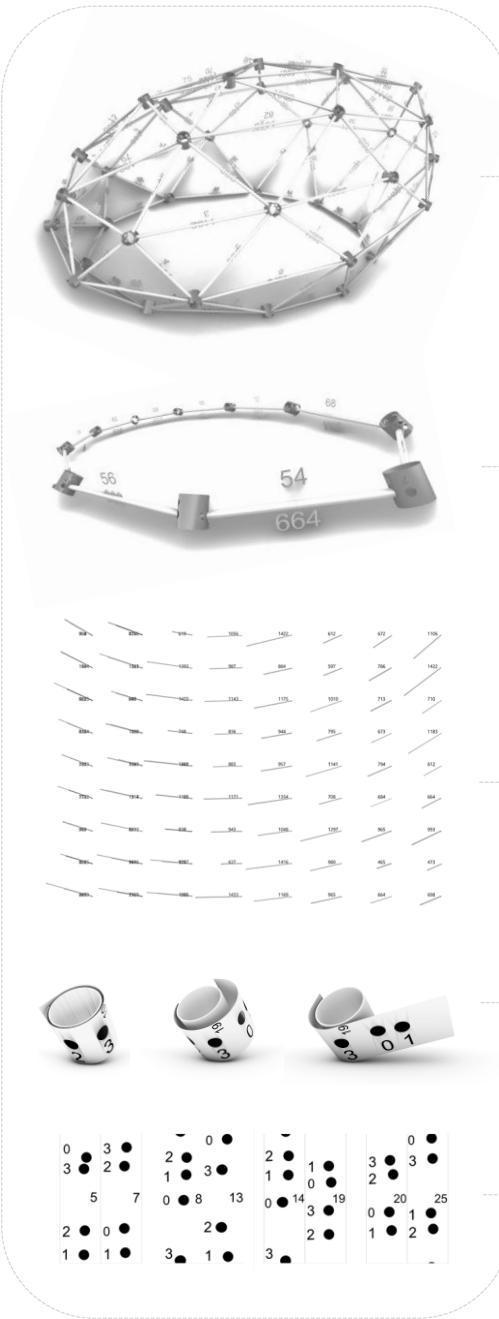
Fabrication Process



05 Drilling Lateral Holes on Both Ends of Each Tube

06. Pre-Assembly Completion: Pipes and Joints Ready

07. Assembling the Bottom Ring



08. Completing the BIM-Guided Assembly Process

09. Connecting All Elements to each other

Geodesic Dome Assembly

Vertical Members Layout & Numbering

Connection Data & Numbering Matrix

Each vertical pipe was numbered and laid out on the ground following fabrication to confirm lengths and ensure accurate tracking. The real challenge, however, lay in the joints. As cylindrical elements, their drilling locations varied significantly across the structure due to the changed form. Without access to a 4-axis CNC machine to precisely drill at compound angles, an alternative approach had to be devised.

The solution made use of OpenNest, a Grasshopper plug-in previously utilized for nesting vertical elements. Each hole on a joint was assigned a unique identifier, and the cylindrical components were unrolled in the digital model to generate flattened 2D drilling guides. These guides were printed on A3 sheets and carefully applied to the surface of each joint during assembly, allowing for accurate manual drilling based on the unrolled layout.

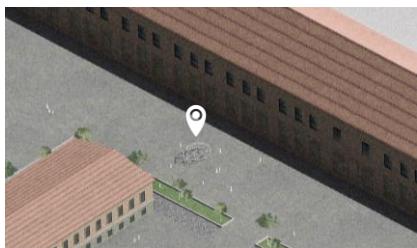
Joints have been unrolled and aligned for printing

Joint Unrolling & 2 Layout

در ادامه، تمامی قطعات عمودی سازه شماره‌گذاری شدند و پس از برش، روی یک سطح چیدمان یافتند تا ابعاد، طول، و شماره‌ی آن‌ها به‌آسانی قابل دستیابی باشد. با این حال، چالش اصلی به مفاصل مربوط می‌شد؛ چرا که فرم استوانه‌ای آن‌ها در فرم نهایی با تنوع بسیار بالا در محل سوراخ‌کاری مواجه می‌شد. از آن‌جا که دسترسی به دستگاه CNC چهار محوره وجود نداشت تا بتواند موقعیت سوراخ‌ها را با چرخاندن استوانه‌ها مشخص کند، راه حلی جایگزین تعریف شد.

برای این منظور، از افرونهای Grasshopper OpenNest در استفاده شد— ابزاری که پیشتر برای چینش قطعات عمودی نیز به کار رفته بود. ابتدا سوواخ‌های هر مفصل شماره‌گذاری شد، سپس استوانه‌های موردنظر در فضای دیجیتال Unroll شده و الگوی گستردگی هر قطعه به صورت دوبعدی استخراج شد. این الگوهای در قالب صفحات A3 پرینت گرفته شده و در حین اجرا با دقت روی سطح مفاصل چسبانده شدند تا محل دقیق سوواخ‌ها به صورت دستی علامت‌گذاری و سوواخ‌کاری شود.

While one group of students began drilling the joints using the hole saws, a second team referred to the digital model to begin cutting the vertical pipe members. Each member's exact length was extracted from the design file, and two-person teams measured and cut them from 6-meter PVC electrical conduits. The parts were then individually labeled with their assigned numbers. A third group was responsible for drilling additional holes at both ends of the pipes to allow for the zip-tie connections.



هم‌زمان، گروهی از دانشجویان با استفاده از متدی گردبر عملیات سوراخ‌کاری مفاصل را آغاز کردند. در کنار این فعالیت، تیم دیگری با مراجعت به فایل طراحی، فرایند برش عناصر عمودی سازه را به عهده گرفت. این کار به‌گونه‌ای انجام می‌شد که ابتدا طول دقیق هر عضو به میلی‌متر از فایل استخراج می‌شد، سپس دو نفر اقدام به برش شاخه‌های ۶ متری لوله‌ی برق PVC می‌کردند و در نهایت، شماره‌ی اختصاصی هر قطعه بر روی آن نوشته می‌شد. گروه سوم نیز مسئولیت ایجاد سوراخ در دو سوی لوله‌ها جهت عبور بست کمریندی را بر عهده داشتند.

By the end of this phase, a total of 92 vertical members and 32 drilled joints had been prepared, marking the transition to the assembly phase.

To streamline part identification during construction, the pipes were sorted by the tens digit of their ID numbers. Assembly began with the formation of the base ring, followed by a sequential upward build. At each step, one student would reference the BIM file and call out the specific connection: for example, "Pipe number 32, from hole 3 on joint 30 to hole 1 on joint 19."

Other students would locate the corresponding components, position them accurately, and secure them using zip ties.

The entire process was carefully documented and coordinated to serve as a reference for future fabrication efforts and to support the reproducibility of similar workshop formats.

Assembly Site- Iran University of Art

در پایان این مرحله، مجموعاً ۹۲ عضو لوله‌ای برش‌خورده و شماره‌گذاری شده، به همراه ۳۲ مفصل سوراخ‌کاری شده آماده شد و فرآیند مونتاژ آغاز گردید.

برای تسمیل در شناسایی قطعات طی مرحله‌ی مونتاژ، اعضای عمودی سازه بر اساس رقم دهگان شماره‌گذاری آن‌ها دسته‌بندی شدند. مونتاژ با شکل‌گیری حلقه‌ی پایینی سازه آغاز شد و سپس، ساختار به صورت تدریجی از پایین به بالا توسعه یافت. در هر مرحله، یکی از دانشجویان با مراجعه به فایل BIM، شماره‌ی دقیق هر اتصال را اعلام می‌کرد و دیگر اعضا قطعه‌ی مربوطه را یافته، در محل مشخص قرار داده و با استفاده از بست کمربندی آن را ثابت می‌کردند.

به عنوان نمونه، خوانده می‌شد:

«لوله‌ی شماره‌ی ۳۲، از حفره‌ی شماره‌ی ۳ مفصل ۳۰ به حفره‌ی شماره‌ی ۱ مفصل ۱۹» تمامی مراحل اجرا به دقت ثبت و سازماندهی شد تا تجربیات این پروژه در پژوهش‌های مشابه آتی مورد استفاده قرار گیرد.

برگزارکنندۀ:
انجمن علمی معماری دانشگاه هنر ایران

مدیر علمی:
دکتر محمد رضا متینی

راهبران:
مهدی کاوه
سینا فولادی

مستندسازی کارگاه:
فائزه رضوانی
مائده خسروی

شرکت کنندگان (به ترتیب حروف الفبا):
اسما احمدی
احسان باقری
مهديار حاجي قاسم
مائده خسروي
فائزه رضوانی
محمد حسن رمضانی
اميرحسين سعادت
فاطمه شيرمحمدی
پریناز طالب صفا
سهييل فخاري
احمد فراهی
ياسمن مجیدی
محمد متین مصطفوی
احسان مظفری
مهند موسوی زاده

the Organizers:
Scientific Association of Architecture, Iran University of Art

Scientific Director:
Dr. Mohammad Reza Matini

Facilitators:
Mehdi Kave
Cena Fooladi

Workshop Documenter:
Faezeh Rezvani
Maede Khosravi

Participants (in alphabetical order):
Asma Ahmadi
Ehsan Bagheri
Mahdiyar Hajighasem
Maede Khosravi
Faezeh Rezvani
Mohammad Hassan Ramezani
Amirhossein Saadat
Fateme Shirmohammadi
Parinaz Talebsafa
Soheil Fakhari
Ahmad Farahi
Yasaman Majidi
Mohammad Matin Mostafavi
Ehsan Mozafari
Mehdi Mosavizade

We would like to express our sincere gratitude to **Dr. Mohammad Reza Matini**, the esteemed Director of the Research and Technology Center at the University of Art, Iran, for his scientific guidance and valuable leadership in the development and execution of this workshop.

We also extend our heartfelt thanks to **Mr. Ehsan Bagheri**, respected university lecturer, whose continuous support and active presence accompanied us throughout the entire workshop.

Our sincere appreciation goes to the University Security Department for their cooperation, which allowed the workshop activities to continue until the late hours.

Finally, we gratefully acknowledge **Mr. Reza Faraghizadeh**, the respected workshop supervisor, for providing access to and facilitating the use of the workshop space.

بدین وسیله از جناب آقای دکتر محمد رضا متینی، مدیر محترم مرکز پژوهش و فناوری دانشگاه هنر ایران، به واسطه‌ی راهنمایی‌های علمی و هدایت ارزشمند ایشان در شکل‌گیری و اجرای این کارگاه صمیمانه قدردانی می‌کنیم. همچنین از جناب آقای احسان باقری، استاد گرامی دانشگاه، که از آغاز تا پایان کارگاه با همکاری مستمر و حضور مؤثر خود ما را همراهی کردند، نهایت سپاس را داریم. از مجموعه محترم حراست دانشگاه نیز صمیمانه تشکر می‌کنیم که با همکاری خود امکان ادامه‌ی فعالیت کارگاه را تا ساعت‌پایانی فراهم ساختند. در پایان، از جناب آقای رضا فراقی‌زاده، مسئول محترم کارگاه، بابت فراهم‌آوردن شرایط بهره‌مندی از فضای کارگاهی، تشکر و قدردانی به عمل می‌آید.

With love and thanks to every invisible pillar of this process ... you are in this, always.

این قاب، تنها تکه‌ای از یک همراهی بزرگ است... با سپاس از تمام دل‌هایی که همراه بودند.